Vierhundert Jahre Rechenschieber
Geschrieben am 22.07.2022 von HNF
Neben den digitalen Rechengeräten wie der Rechenmaschine und dem Computer kennen wir noch die analogen. Die populärsten waren der Rechenstab und die mit ihm verwandte Rechenscheibe. Diese wurde zwischen 1621 und 1630 gleich zweimal erfunden, durch den englischen Mathematiker William Oughtred und seinen Landsmann Richard Delamain. In den 1630er-Jahren erdachte Oughtred den zweiteiligen linearen Rechenschieber.
Es geht nicht ohne Mathematik, doch wir machen es kurz. Den Zahlen größer als Null und einer Basis – sie muss ebenfalls größer als Null sein – lässt sich eindeutig die Menge der Logarithmen zu jener Basis zuordnen. Der Logarithmus von A x B ist dann die Summe der Logarithmen von A und B, der Logarithmus von A/B entspricht ihrer Differenz. Wer eine Logarithmentafel zur Verfügung hat, kann Multiplikation und Division durch die schnellere Addition und Subtraktion ersetzen.
Das Rechnen mit Logarithmen erfanden unabhängig voneinander der Schweizer Uhrmacher und Instrumentenbauer Jost Bürgi und der schottische Mathematiker John Napier. Seine 1614 erschienene Tafel für Sinus-Werte verbreitete sich unter den Gelehrten. Im Jahr 1617 veröffentlichte Napiers englischer Kollege Henry Briggs die Logarithmen der Zahlen von 1 bis 1.000 zur Basis 10. Weitere Listen dieser Art folgten. Der Umgang mit den Briggsschen oder Zehnerlogarithmen wurde bis ins 20. Jahrhundert an den Gymnasien gelehrt.
1624 gab der am Londoner Gresham-College lehrende Edmund Gunter ein Buch über den Jakobsstab heraus. Ein solcher Stab war eine Leiste mit einem verschiebbaren Querholz; er wurde vor allem auf Schiffen benutzt. Mit ihm ermittelten Seeleute die Höhe der Sonne oder eines Sterns über dem Horizont. Gunter machte aus dem Cross-Staff ein universelles Mess- und Rechengerät. Er trug auf der Leiste nebeneinander eine Sinus-, eine Tangens- und eine logarithmische Skala auf und griff Zahlenwerte mit einem Zirkel ab. Der Stab diente somit als eine graphische Logarithmentafel.
In der Folgezeit entstand aus dem verbesserten Jakobsstab die Gunterskala, oft nur Gunter genannt. Die Skala brachte erfinderische Geister auf Ideen. 1630 erschien eine Schrift mit dem seltsamen Titel „Grammelogia“; Autor war der Londoner Lehrer Richard Delamain. Er schilderte ein Instrument mit kreisförmigen Skalen, die sich über die Grundplatte und eine darauf sitzende drehbare Scheibe verteilten. Die Anordnung lässt sich aus einer Arbeit des schweizerisch-amerikanischen Mathematikhistorikers Florian Cajori ersehen. Der Text der „Grammelogia“ findet sich hier
Zwei gegeneinander bewegliche Skalen des Geräts waren logarithmisch unterteilt, anders gesagt, Delamain entwickelte die erste bekannte Rechenscheibe. Unser Eingangsbild zeigt ein jüngeres Exemplar aus dem HNF; es entstand in den 1860er-Jahren in Manchester. Das Arbeitsprinzip folgt aus den Regeln der Logarithmen: Für die Multiplikation von A und B dreht man die 1 des beweglichen Teils neben A, geht weiter zu B und liest auf der Skala genau gegenüber A x B ab. Zum Dividieren kehrt man das Verfahren um.
Schuf Richard Delamaine also die Rechenscheibe und implizit den Rechenstab und das Analogrechnen? Leider haben die Götter vor die Erfindung den Einspruch gesetzt, und der kam vom englischen Pfarrer und Mathematiker William Oughtred. In seinem Buch „Circles of Proportions“ beschrieb er 1632 Kreise mit Skalen einschließlich einer logarithmischen. Beim Rechnen musste der Benutzer einen Kreisabschnitt mit zwei Zeigern erfassen, diese gemeinsam drehen und den Abschnitt an einen anderen ansetzen.
1633 fügte Oughtred seinem Buch jedoch einen Anhang hinzu. Darin erklärte er, schon 1621 einen Rechenstab aus zwei logarithmischen Linealen und eine Rechenscheibe ähnlich der von Delamaine angefertigt zu haben; ihm warf er einen Ideenklau vor. Wir möchten die Sache offenlassen, Details zum Prioritätsstreit trug der erwähnte Florian Cajori zusammen. Sicher ist, dass Oughtred 1633 noch eine Broschüre über ein Messgerät für Fässer schrieb. Es ließ sich auch als ein linearer Rechenschieber verwenden.
Dokumentiert ist ein Rechenstab, den der Instrumentenbauer Elias Allen 1638 für Oughtred erstellte. Er druckte eine Seite des Stabs auf ein Blatt Papier; letzteres entdeckte 2016 ein Forscher in der Bibliothek der Universität Cambridge. Wahrscheinlich gab es einst zwei Stäbe, die aneinander gelegt und verschoben wurden, Einzelheiten liefern ein Artikel und ein Blogbeitrag. Das Londoner Science Museum verwahrt, siehe obiges Foto, einen frühen Rechenschieber mit integriertem beweglichen Teil; er hat einen x-förmigen Querschnitt.
In der Anfangszeit des Rechenstabs finden wir ebenso kombinierte Instrumente wie das von Henry Coggeshall. Nach und nach bildete sich aber die vertraute Form mit Rahmen und Zunge heraus; der Anwenderkreis erweiterte sich von Seeleuten, Zimmermännern und Fassbauern auf andere Handwerker sowie auf Wissenschaftler und Techniker. Der letzte Schritt zum modernen Rechenschieber geschah 1851 mit der Einführung des Läufers durch den jungen französischen Offizier Amédée Mannheim.
Den ersten deutschen Rechenstab schuf ein Anonymus – es könnte auch eine Anonyma gewesen sein – im frühen 18. oder späten 17. Jahrhundert. Wir wissen vom Gerät nur durch die Beschreibung und die Zeichnung im „Theatrum arithmetico-geometricum“ von Jacob Leupold. 1761 verfasste Johann Heinrich Lambert die erste Abhandlung zum Thema in deutscher Sprache. Lange war der Rechenschieber nur wenigen Experten bekannt, ab 1872 verbreitete sich aber der Mannheim-Typ. Später folgten die Systeme Rietz und Darmstadt.
Neben den Rechenstäben blieben Rechenscheiben in Gebrauch, außerdem entstanden Rechenzylinder und Rechenwalzen mit längeren Skalen. Den Rekord hielt ein Gerät mit 24 Metern. In unserem Blog behandelten wir schon das andere Extrem, winzige Rechenschieber für Armbanduhren und Schreibzeug. Das Ende für den Rechenstab brachte in den 1970er-Jahren der Taschenrechner, online kann man sie noch hier und vor allem hier schieben.
Ein sehr lehrreicher und aufschlussreicher Beitrag.
Man könnte ihn ergänzen/fortsetzen durch die spannende Geschichte der Rechenwalzen und der Rechenuhren, vgl. dazu:
Bruderer, Herbert [2020a]: Meilensteine der Rechentechnik, De Gruyter Oldenbourg, Ber-lin/Boston, 3. Auflage 2020, Band 1, 970 Seiten, 577 Abbildungen, 114 Tabellen, https://www.degruyter.com/view/title/567028?rskey=xoRERF&result=7
Bruderer, Herbert [2020b]: Meilensteine der Rechentechnik, De Gruyter Oldenbourg, Ber-lin/Boston, 3. Auflage 2020, Band 2, 1055 Seiten, 138 Abbildungen, 37 Tabellen, https://www.degruyter.com/view/title/567221?rskey=A8Y4Gb&result=4
Bruderer, Herbert [2020c]: Milestones in Analog and Digital Computing, Springer Nature Switzer-land AG, Cham, 3rd edition 2020, 2 volumes, 2113 pages, 715 illustrations, 151 tables, translated from the German by John McMinn, https://www.springer.com/de/book/9783030409739